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1 Introduction
The goal of getting computers to automatically solve problems is central to
artificial intelligence, machine learning, and the broad area encompassed by
what Turing called “machine intelligence” [161, 162].

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going”,
machine learning pioneer Arthur Samuel stated the main goal of the fields of
machine learning and artificial intelligence:

“[T]he aim [is] . . . to get machines to exhibit behavior, which if
done by humans, would be assumed to involve the use of intelli-
gence.”

Genetic programming (GP) is a systematic method for getting computers
to automatically solve a problem starting from a high-level statement of what
needs to be done. GP is a domain-independent method that genetically breeds
a population of computer programs to solve a problem. Specifically, GP itera-
tively transforms a population of computer programs into a new generation of
programs by applying analogs of naturally occurring genetic operations. This
process is illustrated in Figure 1.

The genetic operations include crossover (sexual recombination), mutation
and reproduction. It may also include other analogues of natural operations such
as gene duplication, gene deletion and developmental processes which transform
an embryo into a fully developed structure. GP is an extension of the genetic
algorithm [52] in which the structures in the population are not fixed-length
character strings that encode candidate solutions to a problem, but programs
that, when executed, are the candidate solutions to the problem.

Programs are expressed in GP as syntax trees rather than as lines of code.
For example, the simple expression max(x*x,x+3*y) is represented as shown in
Figure 2. The tree includes nodes (which we will also call points) and links. The
nodes indicate the instructions to execute. The links indicate the arguments for
each instruction. In the following the internal nodes in a tree will be called
functions, while the tree’s leaves will be called terminals.

Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Solution
for( i=1; i < 100; i ++ )
   {
      x += 2.37 * i;
      if ( x > 1000 )
          return( i );
    }
return( 0 );

Figure 1: Main loop of genetic programming
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Figure 2: Basic tree-like program representation used in genetic programming

Figure 3: Multi-tree program representation

In more advanced forms of GP, programs can be composed of multiple com-
ponents (e.g., subroutines). Often in this case the representation used in GP is
a set of trees (one for each component) grouped together under a special node
called root, as illustrated in Figure 3. We will call these (sub)trees branches.
The number and type of the branches in a program, together with certain other
features of the structure of the branches, form the architecture of the program.

GP trees and their corresponding expressions can equivalently be represented
in prefix notation (e.g., as Lisp S-expressions). In prefix notation, functions al-
ways precede their arguments. For example, max(x*x,x+3*y) becomes (max
(* x x)(+ x (* 3 y))). In this notation, it is easy to see the correspon-
dence between expressions and their syntax trees. Simple recursive procedures
can convert prefix-notation expressions into infix-notation expressions and vice
versa. Therefore, in the following, we will use trees and their corresponding
prefix-notation expressions interchangeably.
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2 Preparatory Steps of Genetic Programming
Genetic programming starts from a high-level statement of the requirements of a
problem and attempts to produce a computer program that solves the problem.

The human user communicates the high-level statement of the problem to
the GP algorithm by performing certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic program-
ming require the human user to specify:

1. the set of terminals (e.g., the independent variables of the problem, zero-
argument functions, and random constants) for each branch of the to-be-
evolved program,

2. the set of primitive functions for each branch of the to-be-evolved program,

3. the fitness measure (for explicitly or implicitly measuring the quality of
individuals in the population),

4. certain parameters for controlling the run, and

5. the termination criterion and method for designating the result of the run.

The first two preparatory steps specify the ingredients that are available to
create the computer programs. A run of GP is a competitive search among a
diverse population of programs composed of the available functions and termi-
nals.

The identification of the function set and terminal set for a particular prob-
lem (or category of problems) is usually a straightforward process. For some
problems, the function set may consist of merely the arithmetic functions of ad-
dition, subtraction, multiplication, and division as well as a conditional branch-
ing operator. The terminal set may consist of the program’s external inputs
(independent variables) and numerical constants.

For many other problems, the ingredients include specialized functions and
terminals. For example, if the goal is to get GP to automatically program a
robot to mop the entire floor of an obstacle-laden room, the human user must
tell GP what the robot is capable of doing. For example, the robot may be
capable of executing functions such as moving, turning, and swishing the mop.

If the goal is the automatic creation of a controller, the function set may
consist of integrators, differentiators, leads, lags, gains, adders, subtractors, and
the like and the terminal set may consist of signals such as the reference signal
and plant output.

If the goal is the automatic synthesis of an analog electrical circuit, the
function set may enable GP to construct circuits from components such as
transistors, capacitors, and resistors. Once the human user has identified the
primitive ingredients for a problem of circuit synthesis, the same function set
can be used to automatically synthesize an amplifier, computational circuit,
active filter, voltage reference circuit, or any other circuit composed of these
ingredients.

The third preparatory step concerns the fitness measure for the problem.
The fitness measure specifies what needs to be done. The fitness measure is the
primary mechanism for communicating the high-level statement of the prob-
lem’s requirements to the genetic programming system. For example, if the
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goal is to get genetic programming to automatically synthesize an amplifier,
the fitness function is the mechanism for telling GP to synthesize a circuit that
amplifies an incoming signal (as opposed to, say, a circuit that suppresses the
low frequencies of an incoming signal or that computes the square root of the in-
coming signal). The first two preparatory steps define the search space whereas
the fitness measure implicitly specifies the search’s desired goal.

The fourth and fifth preparatory steps are administrative. The fourth
preparatory step entails specifying the control parameters for the run. The most
important control parameter is the population size. Other control parameters
include the probabilities of performing the genetic operations, the maximum
size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination criterion
may include a maximum number of generations to be run as well as a problem-
specific success predicate. The single best-so-far individual is then harvested
and designated as the result of the run.

3 Executional Steps of Genetic Programming
After the user has performed the preparatory steps for a problem, the run of
genetic programming can be launched. Once the run is launched, a series of
well-defined, problem-independent steps is executed.

GP typically starts with a population of randomly generated computer pro-
grams composed of the available programmatic ingredients (as provided by the
human user in the first and second preparatory steps).

GP iteratively transforms a population of computer programs into a new
generation of the population by applying analogs of naturally occurring genetic
operations. These operations are applied to individual(s) selected from the
population. The individuals are probabilistically selected to participate in the
genetic operations based on their fitness (as measured by the fitness measure
provided by the human user in the third preparatory step). The iterative trans-
formation of the population is executed inside the main generational loop of the
run of GP.

The executional steps of GP are as follows:

1. Randomly create an initial population (generation 0) of individual com-
puter programs composed of the available functions and terminals.

2. Iteratively perform the following sub-steps (called a generation) on the
population until the termination criterion is satisfied:

(a) Execute each program in the population and ascertain its fitness (ex-
plicitly or implicitly) using the problem’s fitness measure.

(b) Select one or two individual program(s) from the population with a
probability based on fitness (with reselection allowed) to participate
in the genetic operations in (c).

(c) Create new individual program(s) for the population by applying the
following genetic operations with specified probabilities:
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• Reproduction: Copy the selected individual program into the
new population.

• Crossover: Create new offspring program(s) for the new popu-
lation by recombining randomly chosen parts from two selected
programs.

• Mutation: Create one new offspring program for the new pop-
ulation by randomly mutating a randomly chosen part of one
selected program.

• Architecture-altering operations: If this feature is enabled,
choose an architecture-altering operation from the available
repertoire of such operations and create one new offspring pro-
gram for the new population by applying the chosen architecture-
altering operation to one selected program.

3. After the termination criterion is satisfied, the single best program in
the population produced during the run (the best-so-far individual) is
harvested and designated as the result of the run. If the run is successful,
the result will be a solution (or approximate solution) to the problem.

Figure 4 is a flowchart of GP showing the genetic operations of crossover,
reproduction, and mutation as well as the architecture-altering operations. This
flowchart shows a two-offspring version of the crossover operation.

The preparatory steps specify what the user must provide in advance to the
GP system. Once the run is launched, the executional steps as shown in the
flowchart (Figure 4) are executed. GP is problem-independent in the sense that
the flowchart specifying the basic sequence of executional steps is not modified
for each new run or each new problem.

There is usually no discretionary human intervention or interaction during
a run of GP (although a human user may exercise judgment as to whether to
terminate a run).

GP starts with an initial population of computer programs composed of
functions and terminals appropriate to the problem. The individual programs
in the initial population are typically generated by recursively generating a
rooted point-labeled program tree composed of random choices of the primitive
functions and terminals (provided by the user as part of the first and second
preparatory steps). The initial individuals are usually generated subject to a
pre-established maximum size (specified by the user as a minor parameter as
part of the fourth preparatory step). For example, in the “Full” initialization
method nodes are taken from the function set until a maximum tree depth is
reached. Beyond that depth only terminals can be chosen. Figure 5 shows
several snapshots of this process. A variant of this, the “Grow” initialization
method, allows the selection of nodes from the whole primitive set until the
depth limit is reached. Thereafter, it behaves like the “Full” method.

In general, after the initialization phase, the programs in the population
are of different size (number of functions and terminals) and of different shape
(the particular graphical arrangement of functions and terminals in the program
tree).

Each individual program in the population is either measured or compared
in terms of how well it performs the task at hand (using the fitness measure
provided in the third preparatory step). For many problems, this measurement
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Figure 4: Flowchart of genetic programming

yields a single explicit numerical value, called fitness. Normally, fitness evalu-
ation requires executing the programs in the population, often multiple times,
within the GP system. A variety of execution strategies exist. The most com-
mon are virtual-machine-code compilation and interpretation. We will look at
the latter.

Interpreting a program tree means executing the nodes in the tree in an order
that guarantees that nodes are not executed before the value of their arguments
(if any) is known. This is usually done by traversing the tree in a recursive
way starting from the root node, and postponing the evaluation of each node
until the value of its children (arguments) is known. This process is illustrated in
Figure 6, where the numbers to the right of internal nodes represent the results of
evaluating the subtrees rooted at such nodes. In this example, the independent
variable x evaluates to –1. Figure 7 gives a pseudo-code implementation of the
interpretation procedure. The code assumes that programs are represented as
prefix-notation expressions and that such expressions can be treated as lists of
components (where a construct like expr(i) can be used to read or set component
i of expression expr).
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Figure 5: Creation of a seven-point tree using the “Full” initialization method
(t=time)

Irrespective of the execution strategy adopted, the fitness of a program may
be measured in many different ways, including, for example, in terms of the
amount of error between its output and the desired output, the amount of
time (fuel, money, etc.) required to bring a system to a desired target state,
the accuracy of the program in recognizing patterns or classifying objects into
classes, the payoff that a game-playing program produces, or the compliance of a
complex structure (such as an antenna, circuit, or controller) with user-specified
design criteria. The execution of the program sometimes returns one or more
explicit values. Alternatively, the execution of a program may consist only of
side effects on the state of a world (e.g., a robot’s actions). Alternatively, the
execution of a program may yield both return values and side effects.

The fitness measure is, for many practical problems, multi-objective in the
sense that it combines two or more different elements. In practice, the different
elements of the fitness measure are in competition with one another to some
degree.

For many problems, each program in the population is executed over a rep-
resentative sample of different fitness cases. These fitness cases may represent
different values of the program’s input(s), different initial conditions of a sys-
tem, or different environments. Sometimes the fitness cases are constructed
probabilistically.

The creation of the initial random population is, in effect, a blind random
search of the search space of the problem. It provides a baseline for judging fu-
ture search efforts. Typically, the individual programs in generation 0 all have
exceedingly poor fitness. Nonetheless, some individuals in the population are
(usually) fitter than others. The differences in fitness are then exploited by ge-
netic programming. GP applies Darwinian selection and the genetic operations
to create a new population of offspring programs from the current population.

The genetic operations include crossover (sexual recombination), mutation,
reproduction, and the architecture-altering operations (when they are enabled).
Given copies of two parent trees, typically, crossover involves randomly select-
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Figure 6: Example interpretation of a syntax tree (the terminal x is a variable
holding the value -1)

ing a crossover point in each parent tree and swapping the sub-trees rooted at
the crossover points, as exemplified in Figure 8. Often crossover points are not
selected with uniform probability. A frequent strategy is, for example, to select
internal nodes (functions) 90% of the times, and any node for the remaining 10%
of the times. Traditional mutation consists of randomly selecting a mutation
point in a tree and substituting the sub-tree rooted there with a randomly gener-
ated sub-tree, as illustrated in Figure 9. Reproduction involves simply copying
certain individuals into the new population. Architecture altering operations
will be discussed later in this chapter.

The genetic operations described above are applied to individual(s) that are
probabilistically selected from the population based on fitness. In this proba-
bilistic selection process, better individuals are favored over inferior individuals.
However, the best individual in the population is not necessarily selected and
the worst individual in the population is not necessarily passed over.

After the genetic operations are performed on the current population, the
population of offspring (i.e., the new generation) replaces the current population
(i.e., the now-old generation). This iterative process of measuring fitness and
performing the genetic operations is repeated over many generations.

The run of GP terminates when the termination criterion (as provided by
the fifth preparatory step) is satisfied. The outcome of the run is specified by
the method of result designation. The best individual ever encountered during
the run (i.e., the best-so-far individual) is typically designated as the result of
the run.

All programs in the initial random population (generation 0) of a run of
GP are syntactically valid, executable programs. The genetic operations that
are performed during the run (i.e., crossover, mutation, reproduction, and the
architecture-altering operations) are designed to produce offspring that are syn-
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Figure 7: Typical interpreter for genetic programming

tactically valid, executable programs. Thus, every individual created during a
run of genetic programming (including, in particular, the best-of-run individual)
is a syntactically valid, executable program.

There are numerous alternative implementations of GP that vary from the
preceding brief description. We will discuss some options in Section 5.

4 Example of a Run of Genetic Programming
To provide concreteness, this section contains an illustrative run of GP in which
the goal is to automatically create a computer program whose output is equal
to the values of the quadratic polynomial x 2+x+1 in the range from –1 to +1.
That is, the goal is to automatically create a computer program that matches
certain numerical data. This process is sometimes called system identification
or symbolic regression.

We begin with the five preparatory steps.
The purpose of the first two preparatory steps is to specify the ingredients

of the to-be-evolved program.
Because the problem is to find a mathematical function of one independent

variable, the terminal set (inputs to the to-be-evolved program) includes the
independent variable, x. The terminal set also includes numerical constants.
That is, the terminal set, is T = {X, <}, where < denotes constant numerical
terminals in some reasonable range (say from –5.0 to +5.0).

The preceding statement of the problem is somewhat flexible in that it
does not specify what functions may be employed in the to-be-evolved pro-
gram. One possible choice for the function set consists of the four ordinary
arithmetic functions of addition, subtraction, multiplication, and division. This
choice is reasonable because mathematical expressions typically include these
functions. Thus, the function set for this problem is F = {+, -, *, %}, where
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Figure 8: Example of two-child crossover between syntax trees

the two-argument +, -, *, and % functions add, subtract, multiply, and divide,
respectively. To avoid run-time errors, the division function % is protected: it
returns a value of 1 when division by 0 is attempted (including 0 divided by 0),
but otherwise returns the quotient of its two arguments.

Each individual in the population is a composition of functions from the
specified function set and terminals from the specified terminal set.

The third preparatory step involves constructing the fitness measure. The
purpose of the fitness measure is to specify what the human wants. The high-
level goal of this problem is to find a program whose output is equal to the
values of the quadratic polynomial x 2+x+1. Therefore, the fitness assigned to a
particular individual in the population for this problem must reflect how closely
the output of an individual program comes to the target polynomial x 2+x+1.
The fitness measure could be defined as the value of the integral (taken over
values of the independent variable x between –1.0 and +1.0) of the absolute value
of the differences (errors) between the value of the individual mathematical
expression and the target quadratic polynomial x 2+x+1. A smaller value of
fitness (error) is better. A fitness (error) of zero would indicate a perfect fit.

For most problems of symbolic regression or system identification, it is not
practical or possible to analytically compute the value of the integral of the
absolute error. Thus, in practice, the integral is numerically approximated
using dozens or hundreds of different values of the independent variable x in
the range between –1.0 and +1.0.

The population size in this small illustrative example will be just four. In
actual practice, the population size for a run of genetic programming consists
of thousands or millions of individuals. In actual practice, the crossover oper-
ation is commonly performed on about 90% of the individuals in the popula-
tion; the reproduction operation is performed on about 8% of the population;
the mutation operation is performed on about 1% of the population; and the
architecture-altering operations are performed on perhaps 1% of the popula-
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Figure 9: Example of sub-tree mutation

tion. Because this illustrative example involves an abnormally small population
of only four individuals, the crossover operation will be performed on two indi-
viduals and the mutation and reproduction operations will each be performed
on one individual. For simplicity, the architecture-altering operations are not
used for this problem.

A reasonable termination criterion for this problem is that the run will con-
tinue from generation to generation until the fitness of some individual gets
below 0.01. In this contrived example, the run will (atypically) yield an alge-
braically perfect solution (for which the fitness measure attains the ideal value
of zero) after merely one generation.

Now that we have performed the five preparatory steps, the run of GP can
be launched. That is, the executional steps shown in the flowchart of Figure 4
are now performed.

GP starts by randomly creating a population of four individual computer
programs. The four programs are shown in Figure 10 in the form of trees.

The first randomly constructed program tree (Figure 10a) is equivalent to
the mathematical expression x+1. A program tree is executed in a depth-
first way, from left to right, in the style of the LISP programming language.
Specifically, the addition function (+) is executed with the variable x and the
constant value 1 as its two arguments. Then, the two-argument subtraction
function (–) is executed. Its first argument is the value returned by the just-
executed addition function. Its second argument is the constant value 0. The
overall result of executing the entire program tree is thus x+1.

The first program (Figure 10a) was constructed, using the “Grow” method,
by first choosing the subtraction function for the root (top point) of the program
tree. The random construction process continued in a depth-first fashion (from
left to right) and chose the addition function to be the first argument of the
subtraction function. The random construction process then chose the terminal
x to be the first argument of the addition function (thereby terminating the
growth of this path in the program tree). The random construction process
then chose the constant terminal 1 as the second argument of the addition
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Figure 10: Initial population of four randomly created individuals of generation
0

Figure 11: The fitness of each of the four randomly created individuals of gen-
eration 0 is equal to the area between two curves.

function (thereby terminating the growth along this path). Finally, the random
construction process chose the constant terminal 0 as the second argument of
the subtraction function (thereby terminating the entire construction process).

The second program (Figure 10b) adds the constant terminal 1 to the result
of multiplying x by x and is equivalent to x 2+1. The third program (Figure 10c)
adds the constant terminal 2 to the constant terminal 0 and is equivalent to the
constant value 2. The fourth program (Figure 10d) is equivalent to x.

Randomly created computer programs will, of course, typically be very poor
at solving the problem at hand. However, even in a population of randomly
created programs, some programs are better than others. The four random
individuals from generation 0 in Figure 10 produce outputs that deviate from the

Figure 12: Population of generation 1 (after one reproduction, one mutation,
and one two-offspring crossover operation)
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output produced by the target quadratic function x 2+x+1 by different amounts.
In this particular problem, fitness can be graphically illustrated as the area
between two curves. That is, fitness is equal to the area between the parabola
x 2+x+1 and the curve representing the candidate individual. Figure 11 shows
(as shaded areas) the integral of the absolute value of the errors between each
of the four individuals in Figure 10 and the target quadratic function x 2+x+1.
The integral of absolute error for the straight line x+1 (the first individual) is
0.67 (Figure 11a). The integral of absolute error for the parabola x 2+1 (the
second individual) is 1.0 (Figure 11b). The integrals of the absolute errors
for the remaining two individuals are 1.67 (Figure 11c) and 2.67 (Figure 11d),
respectively.

As can be seen in Figure 11, the straight line x+1 (Figure 11a) is closer to
the parabola x 2+x+1 in the range from –1 to +1 than any of its three cohorts in
the population. This straight line is, of course, not equivalent to the parabola
x 2+x+1. This best-of-generation individual from generation 0 is not even a
quadratic function. It is merely the best candidate that happened to emerge
from the blind random search of generation 0. In the valley of the blind, the
one-eyed man is king.

After the fitness of each individual in the population is ascertained, GP then
probabilistically selects relatively more fit programs from the population. The
genetic operations are applied to the selected individuals to create offspring
programs. The most commonly employed methods for selecting individuals
to participate in the genetic operations are tournament selection and fitness-
proportionate selection. In both methods, the emphasis is on selecting relatively
fit individuals. An important feature common to both methods is that the
selection is not greedy. Individuals that are known to be inferior will be selected
to a certain degree. The best individual in the population is not guaranteed to
be selected. Moreover, the worst individual in the population will not necessarily
be excluded. Anything can happen and nothing is guaranteed.

We first perform the reproduction operation. Because the first individual
(Figure 10a) is the most fit individual in the population, it is very likely to be
selected to participate in a genetic operation. Let’s suppose that this particular
individual is, in fact, selected for reproduction. If so, it is copied, without
alteration, into the next generation (generation 1). It is shown in Figure 12a as
part of the population of the new generation.

We next perform the mutation operation. Because selection is probabilistic,
it is possible that the third best individual in the population (Figure 10c) is
selected. One of the three nodes of this individual is then randomly picked as
the site for the mutation. In this example, the constant terminal 2 is picked
as the mutation site. This program is then randomly mutated by deleting the
entire subtree rooted at the picked point (in this case, just the constant terminal
2) and inserting a subtree that is randomly grown in the same way that the
individuals of the initial random population were originally created. In this
particular instance, the randomly grown subtree computes the quotient of x
and x using the protected division operation %. The resulting individual is
shown in Figure 12b. This particular mutation changes the original individual
from one having a constant value of 2 into one having a constant value of 1.
This particular mutation improves fitness from 1.67 to 1.00.

Finally, we perform the crossover operation. Because the first and second
individuals in generation 0 are both relatively fit, they are likely to be selected to
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participate in crossover. The selection (and reselection) of relatively more fit in-
dividuals and the exclusion and extinction of unfit individuals is a characteristic
feature of Darwinian selection. The first and second programs are mated sex-
ually to produce two offspring (using the two-offspring version of the crossover
operation). One point of the first parent (Figure 10a), namely the + function,
is randomly picked as the crossover point for the first parent. One point of
the second parent (Figure 10b), namely its leftmost terminal x, is randomly
picked as the crossover point for the second parent. The crossover operation is
then performed on the two parents. The two offspring are shown in Figures 12c
and 12d. One of the offspring (Figure 12c) is equivalent to x and is not note-
worthy. However, the other offspring (Figure 12d) is equivalent to x 2+x+1 and
has a fitness (integral of absolute errors) of zero. Because the fitness of this
individual is below 0.01, the termination criterion for the run is satisfied and
the run is automatically terminated. This best-so-far individual (Figure 12d) is
designated as the result of the run. This individual is an algebraically correct
solution to the problem.

Note that the best-of-run individual (Figure 12d) incorporates a good trait
(the quadratic term x 2) from the second parent (Figure 10b) with two other
good traits (the linear term x and constant term of 1) from the first parent
(Figure 10a). The crossover operation produced a solution to this problem by
recombining good traits from these two relatively fit parents into a superior
(indeed, perfect) offspring.

In summary, GP has, in this example, automatically created a computer pro-
gram whose output is equal to the values of the quadratic polynomial x 2+x+1
in the range from –1 to +1.

5 Further Features of Genetic Programming
Various advanced features of genetic programming are not covered by the fore-
going illustrative problem and the foregoing discussion of the preparatory and
executional steps of GP. In this section we will look at a few alternatives (a
more complete and detailed survey is available in [115]).

5.1 Automatically Defined Functions and Libraries
Human programmers organise sequences of repeated steps into reusable compo-
nents such as subroutines, functions and classes. They then repeatedly invoke
these components, typically with different inputs. Reuse eliminates the need to
“reinvent the wheel” every time a particular sequence of steps is needed. Reuse
also makes it possible to exploit a problem’s modularities, symmetries and reg-
ularities (thereby potentially accelerating the problem-solving process). This
can be taken further, as programmers typically organise these components into
hierarchies in which top level components call lower level ones, which call still
lower levels, etc. Automatically Defined Functions (ADFs) provide a mechanism
by which the evolutionary process can evolve these kinds of potentially reusable
components. We will review the basic concepts here, but ADFs are discussed in
great detail in [66].

When ADFs are used, a program consists of multiple components. These
typically consist of one or more function-defining branches (i.e., ADFs), as well
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as one or more main result-producing branches (the RPB). The RPB is the
“main” program that is executed when the individual is evaluated. It can, how-
ever, call the ADFs, which can in turn potentially call each other. A single ADF
may be called multiple times by the same RPB, or by a combination of the RPB
and other ADFs, allowing the logic that evolution has assembled in that ADF
to be re-used in different contexts.

Typically, recursion is prevented by imposing an order on the ADFs within
an individual and by restricting calls so that ADFi can only call ADFj if i < j.
Also, in the presence of ADFs, recombination operators are typically constrained
to respect the larger structure. That is, during crossover, a subtree from ADFi
can only be swapped with a subtree from another individual’s ADFi.

The program’s result-producing branch and its ADFs typically have different
function and terminal sets. For example, the terminal set for ADFs usually in-
clude arguments, such as arg0, arg1. Typically the user must decide in advance
the primitive sets, the number of ADFs and any call restrictions to prevent re-
cursion. However, these choices can be evolved using the architecture-altering
operations described in Section 5.2.

There has also been proposals for the automated creation of libraries of
functions within GP. For example, [7] and [131] studied the creation and use of
dynamic libraries of subtrees taken from parts of the GP trees in the population.

Naturally, while including ADFs and automatically created libraries make it
possible for modular re-use to emerge, there is no guarantee that they will be
used that way. For example, it may be that the RPB never calls an ADF or
only calls it once. It is also possible for an ADF to not actually encapsulate any
significant logic.

5.2 Architecture-Altering Operations
The architecture of a program can be defined as the total number of trees, the
type of each tree, the number of arguments (if any) possessed by each tree, and,
finally, if there is more than one tree, the nature of the hierarchical references
(if any) allowed among the trees (e.g., whether ADF1 can call ADF2) [66].

There are three ways to determine the architecture of the computer programs
that will be evolved. Firstly, the user may specify in advance the architecture
of the overall program, i.e., perform an architecture-defining preparatory step
in addition to the five steps itemised in Section 2. Secondly, a run of GP may
employ the evolutionary design of the architecture [66], thereby enabling the
architecture of the overall program to emerge from a competitive process during
the run. Finally, a run may employ a set of architecture-altering operations
[66, 67, 64] which, for example, can create, remove or modify ADFs. Note that
architecture changes are often designed not to initially change the semantics of
the program and, so, the altered program often has exactly the same fitness
as its parent. Nevertheless, the new architecture may make it easier to evolve
better programs later.

5.3 Constraining Structures
Most GP systems require that all subtrees return data of the same type. This
ensures that the output of any subtree can be used as one of the inputs to any
node. The basic subtree crossover operator shuffles tree components entirely
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randomly. Type compatibility ensures that crossover cannot lead to incompat-
ible connections between nodes. This is also required to stop mutation from
producing illegal programs.

There are cases, however, where this approach is not ideal. For example,
there might be constraints on the structure of the acceptable solutions or a
problem domain might be naturally represented with multiple types. To apply
GP in these cases one needs to be able to use primitives with different type
signatures. Below we will look at three approaches to constraining the syntax
of the evolved expression trees in GP: simple structure enforcement, strongly
typed GP and grammar-based constraints.

If a particular structure is believed or known to be important then one can
modify the GP system to require that all individuals have that structure [65].
Enforcing a user specified structure on the evolved solutions can be implemented
in a number of ways. For example, one can ensure that all the initial individuals
have the structure of interest and then constrain crossover and mutation so that
they do not alter any of the fixed regions of a tree. An alternative approach is
to evolve the various (sub)components separately. A form of constraint-directed
search in GP was also proposed in [160, 159].

Since constraints are often driven by or expressed using a type system, a
natural approach is to incorporate types and their constraints into the GP sys-
tem [99]. In strongly typed GP, every terminal has a type, and every function
has types for each of its arguments and a type for its return value. The process
that generates the initial, random expressions, and all the genetic operators
are implemented so as to ensure that they do not violate the type system’s con-
straints. For example, mutation replaces subtrees with new randomly generated
trees ensuring that the root of the replacement tree has the same return type as
the root of the excised tree. Similarly, crossover only allows the swap of subtrees
having the same return type. This basic approach to types can be extended to
more complex type systems [99, 49, 104, 169].

Another natural way to express constraints is via grammars, and these have
been used in GP in a variety of ways [164, 45, 166, 105, 50]. In this sort of
system, the grammar is typically used to ensure the initial population is made
up of legal programs. The grammar is also used to guide the operations of the
genetic operators. Thus we need to keep track not only of the program itself,
but also the syntax rules used to derive it.

What actually is evolved in a grammar-based GP system depends on the
particular system. [164], for example, evolved derivation trees, which effectively
are a hierarchical representation of which rewrite rules must be applied, and
in which order, to obtain a particular program. In this system, crossover is re-
stricted to only swapping subtrees deriving from a common non-terminal symbol
in the grammar. The actual program represented by a derivation tree can be
obtained by reading out the leaves of the tree one by one from left to right.

Another approach is grammatical evolution (GE) [134, 105] which represents
individuals as variable-length sequences of integers which are interpreted in the
context of a user supplied grammar. For each rule in the grammar, the set of
alternatives on the right hand side are numbered from 0 upwards. To create a
program from a GE individual one uses the values in the individual to choose
which alternative to take in the production rules. If a value exceeds the number
of available options it is transformed via a modulus operation.
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5.4 Developmental Genetic Programming
By using appropriate terminals, functions and/or interpreters, GP can go be-
yond the production of computer programs. In cellular encoding [43, 44, 42],
programs are interpreted as sequences of instructions which modify (grow) a
simple initial structure (embryo). Once the program has finished, the quality of
the structure it has produced is measured and this is taken to be the fitness of
the program.

Naturally, for cellular encoding to work the primitives of the language must
be able to grow structures appropriate to the problem domain. Typical instruc-
tions involve the insertion and/or sizing of components, topological modifica-
tions of the structure, etc. Cellular encoding GP has successfully been used to
evolve neural networks [43, 44, 42] and electronic circuits [72, 71, 70], as well as
in numerous other domains. A related approach proposed by [51] combines tree
adjoining grammars with L-systems [90] to create a system where each stage in
the developmental process is a working program that respects the grammatical
constraints.

One of the advantages of indirect representations such as cellular encoding
is that the standard GP operators can be used to evolve structures (such as
circuits) which may have nothing in common with standard GP trees. In many
of these systems, the structures being “grown” are also still meaningful (and
evaluable) at each point in their development. This allows fitness evaluation.
Another important advantage is that structures resulting from developmental
processes often have some regularity, which other methods obtain through the
use of ADFs, constraints, types, etc.

5.5 Probabilistic Genetic Programming
Genetic programming typically uses an evolutionary algorithm as its main search
engine. However, this is not the only option. This section considers recent
work where the exploration is performed by estimation of distribution algorithms
(EDAs).

EDAs [13, 89] are powerful population-based searchers where the variation
operations traditionally implemented via crossover and mutation in EAs are
replaced by the process of random sampling from a probability distribution. The
distribution is modified generation after generation, using information obtained
from the fitter individuals in the population. The objective of these changes
in the distribution is to increase the probability of generating individuals with
high fitness.

There have been several applications of probabilistic model-based evolution
in the areas of tree-based and linear GP. The first EDA-style GP system was
effectively an extension of the work in [13] to trees called probabilistic incremen-
tal program evolution (PIPE) [135]. In PIPE, the population is replaced by a
hierarchy of probability tables organised into a tree. Each table represents the
probability that a particular primitive will be chosen at that specific location in
a newly generated program tree. At each generation a population of programs is
created based on the current tree of probability tables. Then, the fitness of the
new programs is computed and the probability hierarchy is updated on the basis
of these fitnesses, so as to make the generation of above-average fitness programs
more likely in the next generation. More recent work includes [168, 93, 94, 119].
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A variety of other systems have been proposed which combine the use of
grammars and probabilities [141]. For example, [127] used a stochastic context-
free grammar to generate program trees where the probability of applying each
rewrite rule was adapted using an EDA approach. A probabilistic L-system was
used in [140] while a tree-adjunct grammar was used in [1, 139].

5.6 Bloat and Bloat Control
Starting in the early 1990s, researchers began to notice that in addition to pro-
gressively increasing their mean and best fitness, GP populations also showed
another phenomenon: very often the average size (number of nodes) of the pro-
grams in a population after a certain number of generations would start growing
at a rapid pace. Typically the increase in program size was not accompanied by
any corresponding increase in fitness. This phenomenon is known as bloat.

Bloat has significant practical effects: large programs are computationally
expensive to evolve and later use, can be hard to interpret, and may exhibit poor
generalisation. Note that there are situations where one would expect to see
program growth as part of the process of solving a problem. For example, GP
runs typically start from populations of small random programs, and it may be
necessary for the programs to grow in complexity for them to be able to comply
with all the fitness cases. So, we should not equate growth with bloat and we
should define bloat as program growth without (significant) return in terms of
fitness.

Numerous empirical techniques have been proposed to control bloat [88, 144].
In the rest of this section we briefly review some of the most important. In
section 7 we will review a subset of theoretical explanations for bloat. More
information can be found in [115, 122].

Rather naturally, the first and simplest method to control code growth is the
use of hard limits on the size or depth of the offspring programs generated by the
genetic operators. Many implementations of this idea (e.g., [65]) apply a genetic
operator and then check whether the offspring is beyond the size or depth limit.
If it isn’t, the offspring enters the population. If, instead, the offspring exceeds
the limit, one of the parents is returned. A problem with this implementation
is that parent programs that are more likely to violate the size limit will tend
to be copied (unaltered) more often than programs that don’t. That is, the
population will tend to be filled up with programs that nearly infringe the size
limit, which is typically not what is desired. However, the problem can be fixed
by not returning parents if the offspring violates a constraint. Instead on should
either return the oversize offspring, but give it a fitness of 0, so that selection
will get rid of it at the next generation, or declare the genetic operation failed,
and try again.

One can also control bloat by using genetic operators which directly or indi-
rectly have an anti-bloat effect. Size fair crossover and size fair mutation [86, 26]
achieve this by constraining the choices made during the execution of a genetic
operation so as to actively prevent growth. In size-fair crossover, for exam-
ple, the crossover point in the first parent is selected randomly, as in standard
crossover. Then the size of the subtree to be excised is calculated. This is used
to constrain the choice of the second crossover point so as to guarantee that the
subtree chosen from the second parent will not be “unfairly” big. There are also
several mutation operators that may help control the average tree size in the
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population while still introducing new genetic material (e.g., see [61, 77, 63, 5]).
As will be clarified by the size evolution equation presented in Section 7.2,

in systems with symmetric operators, bloat can only happen if there are some
longer-than-average programs that are fitter than average or some shorter-than-
average programs that are less fit than average, or both. So, it stands to reason
that in order to control bloat one needs to somehow modulate the selection
probabilities of programs based on their size.

A recent technique, the Tarpeian method [112], controls bloat by acting di-
rectly on selection probabilities. This is done by setting the fitness of randomly
chosen longer-than-average programs to 0. This prevents them being parents.
By changing how frequently this is done the anti-bloat intensity of Tarpeian
control can be modulated. An advantage of the method is that the programs
whose fitness is zeroed are never executed, thereby speeding up runs.

The well-known parsimony pressure method [65, 170, 171, 172] changes the
selection probabilities by subtracting a value based on the size of each program
from its fitness. Bigger programs have more subtracted and, so, have lower
fitness and tend to have fewer children. That is, the new fitness function is
f(x)− c× `(x), where `(x) is the size of program x, f(x) is its original fitness
and c is a constant known as the parsimony coefficient. [171] showed some
benefits of adaptively adjusting the coefficient c at each generation but most
implementations actually keep the parsimony coefficient constant.

Recently, a theoretically sound method for setting the parsimony coefficient
in a principled manner has been proposed [116]. This is called the covariant
parsimony pressure method. The method is easy to implement. It recalculates
the parsimony coefficient c at each generation using c = Cov(`, f)/Var(`), where
Cov(`, f) is the covariance between program size ` and program fitness f in the
population, and Var(`) is the variance of program sizes. Using this equation
ensures that the mean program size remains at the value set by the initialisation
procedure. There is a variant of the method that allows the user to even decide
what function the mean program size should follow over time. As shown in the
figure this provides complete control over the population size dynamics.

6 Human-Competitive Results Produced by Ge-
netic Programming

Samuel’s statement (quoted in Section 1) reflects the goal articulated by the
pioneers of the 1950s in the fields of artificial intelligence and machine learning,
namely to use computers to automatically produce human-like results. Indeed,
getting machines to produce human-like results is the reason for the existence
of the fields of artificial intelligence and machine learning.

To make the notion of human-competitiveness more concrete, we say that a
result is “human-competitive” if it satisfies one or more of the eight criteria in
Table 1.

As can seen from Table 1, the eight criteria have the desirable attribute of
being at arms-length from the fields of artificial intelligence, machine learning,
and GP. That is, a result cannot acquire the rating of “human competitive”
merely because it is endorsed by researchers inside the specialized fields that
are attempting to create machine intelligence. Instead, a result produced by an
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Table 1: Eight criteria for saying that an automatically created result is human-
competitive

Criterion

A
The result was patented as an invention in the past, is an im-
provement over a patented invention, or would qualify today as a
patentable new invention.

B
The result is equal to or better than a result that was accepted
as a new scientific result at the time when it was published in a
peer-reviewed scientific journal.

C
The result is equal to or better than a result that was placed into
a database or archive of results maintained by an internationally
recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result—
independent of the fact that the result was mechanically created.

E
The result is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been a suc-
cession of increasingly better human-created solutions.

F The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H
The result holds its own or wins a regulated competition involv-
ing human contestants (in the form of either live human players or
human-written computer programs).

automated method must earn the rating of “human competitive” independent
of the fact that it was generated by an automated method.

Since 2004, a competition has been held annually at ACM’s Genetic and
Evolutionary Computation Conference (termed the Human-Competitive awards
– the Humies). The $10,000 prize is awarded to projects that have produced
automatically-created human-competitive results according to the criteria in
Table 1. Table 2 lists 71 human-competitive instances where GP has pro-
duced human-competitive results. Each entry in the table is accompanied by
the criteria (from Table 1) that establish the basis for the claim of human-
competitiveness or by the Humies competition where they won a prize or re-
ceived a Honourable mention.

Table 2: Seventy one instances of human-competitive results pro-
duced by genetic programming

Claimed instance Basis for
claim

1 Creation of a better-than-classical quantum algorithm for
the Deutsch-Jozsa “early promise” problem [146] B, F

2 Creation of a better-than-classical quantum algorithm for
Grover’s database search problem [148] B, F

3
Creation of a quantum algorithm for the depth-two
AND/OR query problem that is better than any previously
published result [147, 16]

D
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Claimed instance Basis for
claim

4
Creation of a quantum algorithm for the depth-one OR
query problem that is better than any previously published
result[16]

D

5
Creation of a protocol for communicating information
through a quantum gate that was previously thought not
to permit such communication [149]

D

6 Creation of a novel variant of quantum dense coding [149] D

7 Creation of a soccer-playing program that won its first two
games in the Robo Cup 1997 competition [95] H

8
Creation of a soccer-playing program that ranked in the
middle of the field of 34 human-written programs in the
Robo Cup 1998 competition [3]

H

9
Creation of four different algorithms for the transmembrane
segment identification problem for proteins [66, sections 18.8
and 18.10] and [70, sections 16.5 and 17.2]

B, E

10 Creation of a sorting network for seven items using only 16
steps [70, sections 21.4.4, 23.6, and 57.8.1] A, D

11
Rediscovery of the Campbell ladder topology for lowpass
and highpass filters [70, section 25.15.1] and [73, section
5.2]

A, F

12 Rediscovery of the Zobel “M -derived half section” and “con-
stant K ” filter sections [70, section 25.15.2] A, F

13 Rediscovery of the Cauer (elliptic) topology for filters [70,
section 27.3.7] A, F

14 Automatic decomposition of the problem of synthesizing a
crossover filter [70, section 32.3] A, F

15
Rediscovery of a recognizable voltage gain stage and a Dar-
lington emitter-follower section of an amplifier and other
circuits [70, section 42.3]

A, F

16 Synthesis of 60 and 96 decibel amplifiers [70, section 45.3] A, F
17 Automatic synthesis of asymmetric bandpass filter [72]

18
Synthesis of analog computational circuits for squaring, cub-
ing, square root, cube root, logarithm, and Gaussian func-
tions [70, section 47.5.3]

A, D, G

19 Synthesis of a real-time analog circuit for time-optimal con-
trol of a robot [70, section 48.3] G

20 Synthesis of an electronic thermometer [70, section 49.3] A, G
21 Synthesis of a voltage reference circuit [70, section 50.3] A, G

22 Automatic synthesis of digital-to-analog converter (DAC)
circuit [17]

23 Automatic synthesis of analog-to-digital (ADC) circuit [17]

24

Creation of a cellular automata rule for the majority classi-
fication problem that is better than the Gacs-Kurdyumov-
Levin (GKL) rule and all other known rules written by hu-
mans [4] and [70, section 58.4]

D, E

25
Creation of motifs that detect the D–E–A–D box family
of proteins and the manganese superoxide dismutase fam-
ily [70, section 59.8]

C
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Claimed instance Basis for
claim

26
Synthesis of topology for a PID-D2 (proportional, integra-
tive, derivative, and second derivative) controller [73, sec-
tion 3.7]

A, F

27 Synthesis of an analog circuit equivalent to Philbrick cir-
cuit [73, section 4.3] A, F

28 Synthesis of NAND circuit [73, section 4.4] A, F

29 Simultaneous synthesis of topology, sizing, placement, and
routing of analog electrical circuits [73, chapter 5]

30 Synthesis of topology for a PID (proportional, integrative,
and derivative) controller [73, section 9.2] A, F

31 Rediscovery of negative feedback [73, chapter 14] A, E, F,
G

32 Synthesis of a low-voltage balun circuit [73, section 15.4.1] A

33 Synthesis of a mixed analog-digital variable capacitor cir-
cuit [73, section 15.4.2] A

34 Synthesis of a high-current load circuit [73, section 15.4.3] A

35 Synthesis of a voltage-current conversion circuit [73, section
15.4.4] A

36 Synthesis of a cubic signal generator [73, section 15.4.5] A

37 Synthesis of a tunable integrated active filter [73, section
15.4.6] A

38 Creation of PID tuning rules that outperform the Ziegler-
Nichols and Astrom-Hagglund tuning rules [73, chapter 12]

A, B, D,
E, F, G

39
Creation of three non-PID controllers that outperform a
PID controller that uses the Ziegler-Nichols or Astrom-
Hagglund tuning rules [73, chapter 13]

A, B, D,
E, F, G

40 An Evolved Antenna for Deployment on NASA’s Space
Technology 5 Mission [92]

Humies
2004

41 Automatic Quantum Computer Programming: A Genetic
Programming Approach [145]

Humies
2004

42
Evolving Local Search Heuristics for SAT Using Genetic
Programming [39]; Automated discovery of composite SAT
variable-selection heuristics [38]

Humies
2004

43
How to Draw a Straight Line Using a GP: Benchmarking
Evolutionary Design Against 19th Century Kinematic Syn-
thesis [91]

Humies
2004

44 Organization Design Optimization Using Genetic Program-
ming [60]

Humies
2004

45 Discovery of Human-Competitive Image Texture Feature
Programs Using Genetic programming [76]

Humies
2004

46 Novel image filters implemented in hardware [138] Humies
2004

47

Automated Re- Invention of Six Patented Optical Lens
Systems using Genetic Programming: two telescope eye-
pieces, a telescope eyepiece system, an eyepiece for optical
instruments, two wide angle eyepieces, and a telescope eye-
piece [68, 69]

Humies
2005
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Claimed instance Basis for
claim

48 Evolution of a Human- Competitive Quantum Fourier
Transform Algorithm Using Genetic Programming [97]

Humies
2005

49 Evolving Assembly Programs: How Games Help Micropro-
cessor Validation [25]

Humies
2005

50

Attaining Human-Competitive Game Playing with Genetic
Programming [143]; GP-Gammon: Using Genetic Program-
ming to Evolve Backgammon Players [9]; GP-Gammon: Ge-
netically Programming Backgammon Players [8]

Humies
2005

51 GP-EndChess: Using Genetic Programming to Evolve
Chess Endgame [47]

Humies
2005

52 GP-Robocode: Using Genetic Programming to Evolve
Robocode Players [142]

Humies
2005

53 Evolving Dispatching Rules for Solving the Flexible Job-
Shop Problem [156]

Humies
2005

54 Solution of differential equations with Genetic Programming
and the Stochastic Bernstein Interpolation [54]

Humies
2005

55 Determining Equations for Vegetation Induced Resistance
using Genetic Programming [59]

Humies
2005

56 Sallen-Key filter [74]

57
Using Evolution to Learn How to Perform Interest Point De-
tection [157]; Synthesis of Interest Point Detectors Through
Genetic Programming [158]

Humies
2006

58 Evolution of an Efficient Search Algorithm for the Mate-In-
N Problem in Chess [48]

Humies
2007

59

Evolving local and global weighting schemes in Information
Retrieval [28]; An analysis of the Solution Space for Geneti-
cally Programmed Term-Weighting Schemes in Information
Retrieval [27]; Term-Weighting in Information Retrieval us-
ing Genetic Programming: A Three-Stage Process [29]

Humies
2007

60 Real-Time, Non- Intrusive Evaluation of VoIP [126] Humies
2007

61 Automated Reverse Engineering of nonlinear Dynamical
Systems [20]

Humies
2007

62

Genetic programming approach for electron-alkalimetal
atom collisions [125, 35]; Prediction of Non-Linear System
in Optics Using Genetic Programming [124]; Genetic pro-
gramming approach for flow of steady state fluid between
two eccentric spheres [34]

Humies
2007

63 Genetic Programming for Finite Algebras [150] Humies
2008

64 Automatic synthesis of quantum computing circuit for the
two-oracle AND/OR problem [151]

65
Automatic synthesis of quantum computing algorithms for
the parity problem a special case of the hidden subgroup
problem [153]

66 Automatic synthesis of mechanical vibration absorbers [55]

67 Automatically finding patches and automated software re-
pair [100, 163]

Humies
2009
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Claimed instance Basis for
claim

68 GP-Rush: Using Genetic Programming to Evolve Solvers
for the Rush Hour Puzzle [46]

Humies
2009

69

Learning Invariant Region Descriptor Operators with Ge-
netic Programming and the F-measure [106]; Evolutionary
Learning of Local Descriptor Operators for Object Recog-
nition [107]

Humies
2009

70 Solution of matrix Riccati differential equation for nonlinear
singular system using genetic programming [11]

71 Distilling Free- Form Natural Laws from Experimental
Data [136, 137]

Clearly Table 2 shows GP’s potential as a powerful invention machine. There
are 31 instances where the human-competitive result produced by GP duplicated
the functionality of a previously patented invention, infringed a previously issued
patent, or created a patentable new invention. These include one instance where
genetic programming has created an entity that either infringes or duplicates
the functionality of a previously patented 19th-century invention, 21 instances
where GP has done the same with respect to previously patented 20th-century
inventions, 7 instances where genetic programming has done the same with
respect to previously patented 21st-century inventions, and two instances where
GP has created a patentable new invention. The two new inventions are general-
purpose controllers that outperform controllers employing tuning rules that have
been in widespread use in industry for most of the 20th century.

7 Genetic Programming Theory
GP is a search technique that explores the space of computer programs. As
discussed above, the search for solutions to a problem starts from a group of
points (random programs) in this search space. Those points that are of above
average quality are then used to generate a new generation of points through
crossover, mutation, reproduction and possibly other genetic operations. This
process is repeated over and over again until a termination criterion is satisfied.

If we could visualize this search, we would often find that initially the popu-
lation looks a bit like a cloud of randomly scattered points, but that, generation
after generation, this cloud changes shape and moves in the search space fol-
lowing a well defined trajectory. Because GP is a stochastic search technique,
in different runs we would observe different trajectories. These, however, would
very likely show clear regularities to our eye that could provide us with a deep
understanding of how the algorithm is searching the program space for the so-
lutions to a given problem. We could probably readily see, for example, why
GP is successful in finding solutions in certain runs and with certain parameter
settings, and unsuccessful in/with others.

Unfortunately, it is normally impossible to exactly visualize the program
search space due to its high dimensionality and complexity, and so we cannot
just use our senses to understand and predict the behavior of GP.

One approach to gain an understanding of the behavior of a genetic program-
ming system and predict its behaviour in precise terms is to define and study
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mathematical models of evolutionary search. There are a number of cases where
this approach has been very successful in illuminating some of the fundamental
processes and biases in GP systems. In this section we will review some theo-
retical approaches to understanding GP. The reader is referred to [122, 84, 115]
for a more extensive review of GP theory.

7.1 Models of GP Search
Schema theories are among the oldest and the best known models of evolution-
ary algorithms [53, 165]. Schema theories are based on the idea of partitioning
the search space into subsets, called schemata. They are concerned with mod-
elling and explaining the dynamics of the distribution of the population over the
schemata. Modern genetic algorithm schema theory [154, 155] provides exact
information about the distribution of the population at the next generation in
terms of quantities measured at the current generation, without having to actu-
ally run the algorithm. Exact schema theories are also available for GP systems
with a variety of genetic operators (e.g., see [108, 109, 110, 84, 120, 117, 118]).
Markov chain theory has also started being applied to GP [121, 120, 98], al-
though so far this hasn’t been developed as fully as the schema theory.

Exact mathematical models of GP, such as schema theories and Markov
chains, are probabilistic descriptions of the operations of selection, reproduc-
tion, crossover and mutation. They explicitly represent how these operations
determine which areas of the program space will be sampled by GP, and with
what probability. These models treat the fitness function as a black box, how-
ever. That is, there is no representation of the fact that in GP, unlike in other
evolutionary techniques, the fitness function involves the execution of computer
programs on a variety of inputs. In other words, schema theories and Markov
chains do not tell us how fitness is distributed in the search space. Yet, without
this information, we have no way of closing the loop and fully characterising
the behaviour of a GP systems which is always the result of the interaction
between the fitness function and the search biases of the representation and
genetic operations used in the system.

Fortunately, the characterisation of the space of computer programs explored
by GP has been another main topic of theoretical research [84]. In this cate-
gory are theoretical results showing that the distribution of functionality of non
Turing-complete programs approaches a limit as program length increases. That
is, although the number of programs of a particular length grows exponentially
with length, beyond a certain threshold the fraction of programs implementing
any particular functionality is effectively constant. There is a very substantial
body of empirical evidence indicating that this happens in a variety of systems.
In fact, there are also mathematical proofs of these convergence results for two
important forms of programs: Lisp (tree-like) S-expressions (without side ef-
fects) and machine code programs without loops [84, 78, 79, 81, 80, 82]. Also,
recently, [83, 113] started extending these results to Turing complete machine
code programs.

7.2 Bloat
In Section 5.6 we introduced the notion of bloat and described some effective
mechanisms for controlling it. Below we review a subset of theoretical models
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and explanations for bloat. More information can be found in [122, 115, 84].
There have been some efforts to approximately mathematically model bloat.

For example, [14] defined an executable model of bloat where only the fitness, the
size of active code and the size of inactive code were represented (i.e., there was
no representation of program structures). Fitnesses of individuals were drawn
from a bell-shaped distribution, while active and inactive code lengths were
modified by a size-unbiased mutation operator. Various interesting effects were
reported which are very similar to corresponding effects found in GP runs. [130]
proposed a similar, but slightly more sophisticated model which also included
an analogue of crossover.

A strength of these executable models is their simplicity. A weakness is that
they suppress or remove many details of the representation and operators typi-
cally used in GP. This makes it difficult to verify if all the phenomena observed
in the model have analogues in GP runs, and if all important behaviours of GP
in relation to bloat are captured by the model.

In [111, 118], a size evolution equation for GP was developed, which provided
an exact formalisation of the dynamics of average program size. The equation
has recently been simplified [116] giving:

E[µ(t+ 1)− µ(t)] =
∑
`

`× (p(`, t)− Φ(`, t)), (1)

where µ(t+ 1) is the mean size of the programs in the population at generation
t+1, E is the expectation operator, ` is a program size, p(`, t) is the probability of
selecting programs of size ` from the population in generation t, and Φ(`, t) is the
proportion of programs of size ` in the current generation. The equation applies
to a GP system with selection and any form of symmetric subtree crossover.1
Note that the equation constrains what can and cannot happen size-wise in GP
populations. Any explanation for bloat has to agree with it.

In particular, Equation (1) shows that there can be bloat only if the selection
probability p(`, t) is different from the proportion Φ(`, t) for at least some `. So,
for bloat to happen there will have to be some small `’s for which p(`, t) < Φ(`, t)
and also some bigger `’s for which p(`, t) > Φ(`, t) (at least on average).

We conclude this review on theories of bloat with a recent promising expla-
nation for bloat called the crossover bias theory [114, 30], which is based on
and is consistent with Equation (1). The theory goes as follows. On average,
each application of subtree crossover removes as much genetic material as it
inserts; consequently crossover on its own does not produce growth or shrink-
age. While the mean program size is unaffected, however, higher moments of
the distribution are. In particular, crossover pushes the population towards a
particular distribution of program sizes, known as a Lagrange distribution of the
second kind, where small programs have a much higher frequency than longer
ones. For example, crossover generates a very high proportion of single-node
individuals. In virtually all problems of practical interest, however, very small
programs have no chance of solving the problem. As a result, programs of
above average size have a selective advantage over programs of below average
size, and the mean program size increases. Because crossover will continue to
create small programs, which will then be ignored by selection (in favour of

1In a symmetric operator the probability of selecting particular crossover points in the
parents does not depend on the order in which the parents are drawn from the population.
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the larger programs), the increase in average size will continue generation by
generation.

8 Conclusions
In his seminal 1948 paper entitled “Intelligent Machinery,” Turing identified
three ways by which human-competitive machine intelligence might be achieved.
In connection with one of those ways, Turing [161] said:

“There is the genetical or evolutionary search by which a combi-
nation of genes is looked for, the criterion being the survival value.”

Turing did not specify how to conduct the “genetical or evolutionary search”
for machine intelligence. In particular, he did not mention the idea of a
population-based parallel search in conjunction with sexual recombination
(crossover) as described in John Holland’s 1975 book Adaptation in Natural
and Artificial Systems. However, in his 1950 paper “Computing Machinery and
Intelligence,” Turing [162] did point out

“We cannot expect to find a good child-machine at the first at-
tempt. One must experiment with teaching one such machine and
see how well it learns. One can then try another and see if it is better
or worse. There is an obvious connection between this process and
evolution, by the identifications

“Structure of the child machine = Hereditary material
“Changes of the child machine = Mutations
“Natural selection” = Judgment of the experimenter”

That is, Turing perceived in 1948 and 1950 that one possibly productive ap-
proach to machine intelligence would involve an evolutionary process in which
a description of a computer program (the hereditary material) undergoes pro-
gressive modification (mutation) under the guidance of natural selection (i.e.,
selective pressure in the form of what we now call “fitness”).

Today, many decades later, we can see that indeed Turing was right. Ge-
netic programming has started fulfilling Turing’s dream by providing us with
a systematic method, based on Darwinian evolution, for getting computers to
automatically solve hard real-life problems. To do so, it simply requires a high-
level statement of what needs to be done (and enough computing power).

Turing also understood the need to evaluate objectively the behaviour ex-
hibited by machines, to avoid human biases when assessing their intelligence.
This led him to propose an imitation game, now know as the Turing test for ma-
chine intelligence, whose goals are wonderfully summarised by Arthur Samuel’s
position statement quoted in the introduction of this chapter.

At present GP is certainly not in a position to produce computer programs
that would pass the full Turing test for machine intelligence, and it might not be
ready for this immense task for centuries. Nonetheless, thanks to the constant
technological improvements in GP technology, in its theoretical foundations and
in computing power, GP has been able to solve tens of difficult problems with
human-competitive results (see Table 2) in the recent past. These are a small
step towards fulfilling Turing and Samuel’s dreams, but they are also early signs
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of things to come. It is, indeed, arguable that in a few years’ time GP will be
able to routinely and competently solve important problems for us in a vari-
ety of specific domains of application, even when running on a single personal
computer, thereby becoming an essential collaborator for many of human ac-
tivities. This, we believe, will be a remarkable step forward towards achieving
true, human-competitive machine intelligence.
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A Tricks of the Trade and Resources
Newcomers to the field of GP often ask themselves (and/or other more experi-
enced genetic programmers) questions such as the following:

1. Will GP be able to solve my problem?

2. What is the best way to get started with GP? Which books or papers
should I read?

3. Should I implement my own GP system or should I use an existing pack-
age? If so, what package should I use?

In this appendix we will try to answer these questions (and many more)
by considering the ingredients of successful GP applications (Section A.1) and
reviewing some of the wide variety of available sources on GP which should
assist readers who wish to explore further (Sections A.2–A.4).

A.1 Application Areas where GP is Likely to Excel
Based on the experience of numerous researchers over many years, it appears
that GP and other evolutionary computation methods have been especially pro-
ductive in areas having some or all of the following properties:

• The interrelationships among the relevant variables is unknown or poorly
understood (or where it is suspected that the current understanding may
possibly be wrong).

• Finding the size and shape of the ultimate solution is a major part of the
problem.

• Significant amounts of test data are available in computer-readable form.

• There are good simulators to test the performance of tentative solutions
to a problem, but poor methods to directly obtain good solutions.
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• Conventional mathematical analysis does not, or cannot, provide analytic
solutions.

• An approximate solution is acceptable (or is the only result that is ever
likely to be obtained).

• Small improvements in performance are routinely measured (or easily mea-
surable) and highly prized.

A.2 Key Books and Journals
There are more than 30 books written in English principally on GP or its ap-
plications with more being written. These start with Koza’s 1992 book Genetic
Programming (often referred to as Jaws). Koza has subsequently published
three additional books on GP: Genetic Programming II: Automatic Discovery
of Reusable Programs (1994) deals with ADFs; Genetic Programming 3 (1999)
covers, in particular, the evolution of analogue circuits; Genetic Programming
4 (2003) uses GP for automatic invention. MIT Press published three volumes
in the series Advances in Genetic Programming [62, 6, 152]. The joint GP /
genetic algorithms Kluwer book series now contains over 10 books starting with
Genetic Programming and Data Structures [85]. Apart from Jaws, these tend
to be for the GP specialist. The late 1990s saw the introduction of the first
textbook dedicated to GP [15].

The 2008 book A Field Guide to Genetic Programming [115] provides a
gentle introduction to GP as well as a review of its different flavours and appli-
cation domains. The book is freely available on the Internet in PDF and HTML
formats.

Other titles include: Genetic Programming (in Japanese) [56], Principia
Evolvica – Simulierte Evolution mit Mathematica (in German) [57] (English
version [58]), Data Mining Using Grammar Based Genetic Programming and
Applications [167], Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language [105], Humanoider: Sjavlarande robotar och ar-
tificiell intelligens (in Swedish) [103], and Linear Genetic Programming [22].

Readers interested in mathematical and empirical analyses of GP behaviour
may find Foundations of Genetic Programming [84] useful.

Each of Koza’s four books has an accompanying video. These videos are now
available in DVD format. Also, a small set of videos on specific GP techniques
and applications is available via on-line resources such as Google Video and
YouTube.

In addition to GP’s own Genetic Programming and Evolvable Machines jour-
nal, Evolutionary Computation, the IEEE transaction on Evolutionary Compu-
tation, Complex Systems (Complex Systems Publication, Inc.), and many others
publish GP articles. The GP bibliography [87] lists several hundred different
journals worldwide that have published articles related to GP.

A.3 GP Implementations
One of the reasons behind the success of GP is that it is easy to implement
own versions, and implementing a simple GP system from scratch remains an
excellent way to make sure one really understands the mechanics of GP. In
addition to being an exceptionally useful exercise, it is often easier to customise
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(e.g., adding new, application specific genetic operators or implementing un-
usual, knowledge-based initialisation strategies) a system one has built for new
purposes than a large GP distribution. All of this, however, requires reasonable
programming skills and the will to thoroughly test the resulting system until it
behaves as expected.

This is actually an extremely tricky issue in highly stochastic systems such
as GP. The problem is that almost any system will produce “interesting” be-
haviour, but it is typically very hard to test whether it is exhibiting the correct
interesting behaviour. It is remarkably easy for small mistakes to go unnoticed
for extended periods of time (even years). It is also easy to incorrectly assume
that “minor” implementation decisions will not significantly affect the behaviour
of the system.

An alternative is to use one of the many public domain GP implementations
and adapt this for one’s purposes. This process is faster, and good implementa-
tions are often robust, efficient, well documented and comprehensive. The small
price to pay is the need to study the available documentation and examples.
These often explain how to modify the GP system to some extent. However,
deeper modifications (such as the introduction of new or unusual operators) will
often require studying the actual source code and a substantial amount of trial
and error. Good publicly available GP implementations include: Lil-GP [123],
ECJ [96], Open Beagle [40] and GPC++ [37]. The most prominent commercial
implementation remains Discipulus [129]; see [36] for a review.

While the earliest GP systems were implemented in Lisp, people have since
coded GP in a huge range of different languages, including C/C++, Java,
Python, JavaScript, Perl, Prolog, Mathematica, Pop-11, MATLAB, Fortran,
Occam and Haskell. Typically, these evolve expressions and programs which
look like simplified Lisp. More complex target languages can be supported,
however, especially with the use of more advanced tools such as grammars and
type systems. Conversely, many successful programs in machine code or low-
level languages have also climbed from the primordial ooze of initial randomness.

A.4 On-Line Resources
On-line resources appear, disappear, and move with great speed, so the ad-
dresses here, which were correct at the time of writing, are obviously subject to
change without notice after publication. Hopefully, the most valuable resources
should be readily findable using standard search tools.

One of the key on-line resources is the GP bibliography [87] available from
http://www.cs.bham.ac.uk/~wbl/biblio/ At the time of writing, this bibli-
ography contains over 6,000 GP entries, roughly half of which can be downloaded
immediately.

The GP bibliography has a variety of interfaces. It allows for quick jumps
between papers linked by authors and allows one to sort the author list by
the number of GP publications. Full references are provided in both BibTEX
and Refer formats for direct inclusion in papers written in LATEX and Microsoft
Word, respectively. The GP bibliography is also part of the Collection of Com-
puter Sciences Bibliographies [2], which provides a comprehensive Lucerne syn-
tax search engine.

From early on there has been an active, open email discussion list: the GP-
list [41]. The [32] is a moderated list covering evolutionary computation more
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broadly, and often contains GP related announcements.
Koza’s http://www.genetic-programming.org/ contains a ton of useful

information for the novice, including a short tutorial on “What is Genetic Pro-
gramming” and the Lisp implementation of GP from Genetic Programming [65].
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